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Soliton and breather states of the quantum sine-Gordon model 
in light cone coordinates through the exact QIST method 
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Prafulla Chandra Road, Calcutta-700 009, India 

Received 9 September 1987, in final form 27 April 1988 

Abstract. The quantum sine-Gordon equation in light cone coordinates is solved exactly 
through the quantum inverse scattering technique by finding a suitable gauge in which the 
model becomes ultralocal. The existence of breather bound states is shown and a consistent 
soliton representation is produced. Physical consequences are discussed along with a 
possible gauge invariance of the system at the quantum level. 

1. Introduction 

After the overwhelming success of the inverse scattering transform (IsT) for integrating 
exactly a class of non-linear field equations in one space dimension [ l., 21 its quantum 
version (QIST) was developed [3-51 to solve the corresponding quantum models. But 
unfortunately, while the QIST gave excellent result for models like the non-linear 
Schrodinger equation (NLS)  [6,7] with ultralocality, it was found to be unsuccessful 
in treating models like K d v ,  derivative NLS [8], non-linear (+ models [9], etc, with 
non-ultralocality. The sine-Gordon ( S G )  model is also an example of non-ultralocal 
class. The brilliance of Sklyanin et a1 [lo],  however, was able to tackle SG through 
QIST in a particular gauge and find breather solutions. A recent work [ 113 also extended 
the earlier approach for the SG model to an  elegant continuum limit. In spite of their 
success both the above methods [lo,  111 were confined only to the laboratory system 
of coordinates (Lec) and failed to find (anti-)soliton states. Contrary to QIST, in the 
classical case it is easier to solve SG through IST in light cone coordinates ( L c c )  and  
obtain both (anti-)soliton and breather solutions [ 11. 

It is, therefore, an  open question whether it is possible to pursue QIST for SG in 
LCC and whether soliton solutions can be found for this model. Our aim is to answer 
these questions. We overcome the difficulties for solving SG in LCC through QIST by 
finding a suitable gauge, in which the model becomes ultralocal and  leads to an exact 
solution. An added advantage of our method is that potentially it has wide applications 
in dealing with models associated with the A K N S  spectral problem including non- 
relativistic models like quantum M K d v  [ 121. An attempt has also been made to construct 
a consistent representation of bosonic creation operators leading to (anti-)soliton states 
with a spectrum similar to that found semiclassically [ 131. The bosonic particle states 
formed through interaction of a soliton and  an  anti-soliton in their turn may also form 
a bound-state breather solution. The classical gauge equivalent Lax operator rep- 
resentation for a particular model breaks, in general, in the quantum case. Therefore, 
QlsT applied to  any system is generally valid for a particular gauge choice. We, however, 
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have demonstrated that our solution of SG in the light cone exhibits gauge invariance 
even at the quantum level. 

In $ 2 we introduce the model and explicitly construct the R matrix starting from 
a suitable Lax operator. Section 3 gives the N-particle eigenstates and the corresponding 
eigenvalues. The breather bound state and the possible soliton state are also constructed 
in this section. Section 4 discusses the gauge equivalence of the model at  the quantum 
level and 0 5 is a concluding one. 

2. The quantum sine-Gordon model 

The sine-Gordon model in LCC x = ; ( X I  - x u ) ,  t = $ ( x i  + x o )  is given by the equation 

e,, = m' sin e. 

d , T , l ( h ) = L ( x , A ) T : ( A )  ( 2 )  

L ( X ,  A )  = i($mAa,-$d,O(x)a,). (3) 

(1) 

The linear system 

associated with this model is usually given by the AKNS type Lax operator representation 

However, one finds that the Lax operator (3) leads to a non-ultralocal Poisson bracket 
structure which forbids direct application of QIST to the corresponding quantum case. 
Therefore, in such cases one has to look for some suitable Lax operator of this model 
which is free from non-ultralocality. Fortunately, we are able to obtain the following 
ultralocal Lax operator given as 

by introducing new variables in the form d , e ( x )  = i ( d , q ( x )  - n ( x ) ) ,  where q ( x )  and 
~ ( x )  satisfy the canonical relations 

[ q ( x ) ,  7 0 ) l =  4 h P Z S ( X - Y )  (5a) 

[ q ( x ) ,  q ( y ) I =  [ d x ) ,  . i r ( y ) l =  0. ( 5 b )  

Note that the above properties ( 5 a )  and ( 5 b )  are consistent with [ d , O ( x ) , d , e ( y ) ] =  
-2h/3'd,S(x - y )  which is derivable from the standard equal-time ( x o  = y o =  0) commu- 
tation relation [ B ( y ' ) ,  a , o e ( x ' ) ]  = hp'S(x' -yl) .  The time evolution operator in this 
case is given by 

(6) 
One may easily check that the compatibility condition of (4) and ( 6 ) ,  d,L-a ,M+ 
[ L, M ]  = 0, leads to the same sine-Gordon equation (1) in the e variable. 

Therefore, for solving equation (1) through QIST we may start from the Lax operator 
(4) considering the fields as quantum operators and express the monodromy matrix 
as the path-ordered product: 

and 

M = ${d,qa, - ( 2 m  / A  )[cos( 6 -&)a, -sin( 8 - iq)a2]}. 
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The methods developed in [ 10, 111 may be applied now with no difficulty. We present 
here in brief the main steps involved; the details can be found in [ l l ] .  The most 
important relation in QIST is the Yang-Baxter equation 

R(A,  p)T: (A)O T : ( p )  = T : ( p ) @  T:(A)R(A, p )  (8) 

which guarantees the complete integrability of the system and, consequently, the major 
aim of this approach is to find the related R matrix. For this, we first have to obtain 
an equation for the direct product of monodromy matrices. However, this procedure 
involves the product of local field operators at the same point, giving rise to singularities, 
which should be carefully taken into account. We have 

~ , ( T : ( A ) o  T X ~ ) )  = r(x, A,  +)T:(A)o T : ( ~ L )  (9) 

with 

r ( x , ~ , p ) = L ( x , A ) O n + u O L ( x , ~ )  

ti' ~ S [ L ( X , A ) O L ( ~ , C L ) + L ( ~ , A ) O L ( X , ~ . ) I + O ( ~ ~ ) .  (10) 
x - A  

Considering now the singularities of the operator products in (10) we observe that 
1113 the leading singularities are of the order l /A only, provided hp' < 27r. A typica; 
singularity is obtained in the form 

(11) [ x'-'(x,,:exp[(i/2)q(l')]:] = 2ihs '- ' (x -V):exp[(i/2)q(y)]: 

q ( x )  = q ' " ( x )  + q ' -  ' i x )  

where T ' - ' ( x )  and q ' - ' ( y )  are the 'negative frequency' components. Similarly, other 
relevant terms can also be obtained leading finally, in the limit A + 0, to the expression 

r ( x , A , p ) = L ( x , A ) ~ U + U O L ( x , p )  

- $my[A (a3@ al + a r O a r )  - p ( a l  0 (r2 + al @a3)]  (12) 

with y =  hp'/2. Note that the terms with y appear as a consequence of the normal 
ordering procedure described above. Due to (9) relation (8) reduces now to 

R ( A ,  p m ,  A, p ) =  u x ,  p, A I N A ,  p )  (13) 
which yields 

R(A,  ~ ) = n @ n + f ( A ,  p )v30(+3+g(A,  p )a?Oa?th(A,  ~ ) ' T I O U I  (14) 
with 

and 

In the classical limit (14) reduces clearly to the classical r matrix [5] 

R ==P+iyPr  Y+O 

P = i(oon + C T a  %a" ) 

where 
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and  

with 

It is interesting to note that the quantum R matrix (14) obtained here for SG in 
LCC coincides exactly with that found in LBC [ 111 if the parametrisation 

K o = i m ( A + l / A )  K 1 = f m ( A - l / A )  (16) 

is introduced and y is replaced by y/4, which reflects the difference in the normal 
ordering prescription in these cases. 

Switching over to the infinite interval limit we may define now the scattering data 
matrix T ( A )  as 

T ( A )  = lim exp( -$imAa,x)T:(A) exp(fimAu,y) 
X’ k2z 
V - - X  

which may be expressed explicitly in the form 

Following the same procedure as developed in [ l l ,  141 it may be shown that the 
Yang-Baxter relation (8) in the infinite interval limit reduces to 

where 

I &(A,  p )  = lim 
x-@= 

0 
0 

0 
0 

0 il +f) I 
Now one may easily derive a commutation algebra between the elements of the 

scattering data matrix (17b) from (18) and (19) by taking properly the limit x + + m  
[ 11, 141. In this procedure one encounters singular terms, which should be understood 
in the principal value sense lim,x,,, P exp[iAx]/A = * i l i G ( A )  resulting finally in the 
relations 

etc, where the symmetry relations A(A) = A(-A) and  B(A) = B ( - A )  for real A are used. 
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3. N-particle states and corresponding eigenvalues 

Since A( A )  generates the conserved quantities, for finding the physical observables we 
construct N-bosonic particle states as the eigenstates of the operator A(A in the form 

l @ N ( P l . .  . p.N))= R P I ) .  . ‘ ~(PN)IO). (21) 

Since our Lax operator (4) in terms of the local quantum field q has a similar 
structure to the Lax operator of [lo], the same line of argument as in [ lo]  can be 
followed to show the existence of a vacuum state 10) satisfying the condition B(A)lO) = 0 
and A(A)/O) = IO). 

The eigenvalues of A(A) acting on the state ( O N )  may be obtained using the 
commutation relation ( ~ O C ) ,  which leads to 

A ( A ) I @ , ) = U , ( A , p ) I @ ~ t )  

with 

where y is replaced by tan( y‘/2) and a shift in the spectral parameter A + A exp(-i y’/2) 
is implemented. A similar type of spectral shift is also needed earlier in other contexts 
[14] to remove asymmetry in the position of zeros and poles of a N .  Such formal 
shifting of parameters is required to neutralise the asymmetry appearing as a result of 
normal ordering [ 151. To explore some physical interpretations we observe that, due 
to the Lorentz invariance of the system, we have 4 = x F K ,  = invariant, with K ,  given 
by (16). Consequently A + A exp(-i y‘/2) is equivalent to the transition to a new Lorentz 
frame ( x ‘ ~ )  with imaginary velocity (-iy’/2). Note also that, under the above Lorentz 
transformation, masses remain invariant, while the complex-valued energy and momen- 
tum acquire real values, which is the motivation of our particular choice of the 
parameter. In terms of rapidities ay  ( A ,  p )  becomes 

where we have introduced A = exp(a)  and kJ = exp(pJ). 

expansions of 
The conserved quantities are determined by the eigenvalues of the asymptotic 

f c,A-” as A - + E  
n = l  

f c-,An as A + O .  
n = O  

In A(A) = 

In particular, the energy and momentum may be given by 

Therefore, the invariant mass of a scattering N-bosonic particle state yields 
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A distribution of rapidities of the particles in the form 

p, = p /  N+i  y ' [ j  - ( N  + 1)/2] (26) 

where /3 is real, cancels all zeros and  poles from consecutive factors of a N  ( A ,  p )  leaving 
only two symmetrically placed zeros (poles) in the upper (lower) half A plane, leading 
to 

( A  -PN) (A  + i N )  

( A  - F v ) ( A  +PUN) 
a%, Po) = 

where 

P N  = p0 e x p ( i N ~ ' l 2 )  Po = exp(P/  N )  (27) 

and  corresponds to a bound state 

with analytic prolongation of pJ as (26) and  Bh(po) as the N-particle breather 'creation' 
operator. The corresponding energy, momentum and mass are given by 

2m Ny '  p 2m NY' . p P E  = - sin - sinh - 
N IY ' I  2 N IY'l 2 

H t z  = - sin - cosh - 

and 

(29b) 

respectively. Consequently, the binding energy (mass) is AM % = NMF - M % a 0 show- 
ing the breather to be a genuine bound state for N > 1. Note that for N = NmaX = ~ / l y ' l  
we have p M,,, 5 iko in (27) and consequently two zeros (poles) of a;  in the upper 
(lower) half A plane merge together leading to 

i.e. they yield a degenerate single zero (pole) on the imaginary axis, which clearly 
corresponds to the generation of soliton and antisoliton states from a breather state 
at this limit. One observes also that at this same limit N + N,,, the breather mass 
(29b) becomes equal to the mass of two solitons, where the soliton mass is given by 
m/ly'l as shown below. Therefore, (29b) is valid for 1 s N < N,,,, which is also 
consistent with the constraint on y. 

Now in an  attempt to find out consistent soliton states, we propose the following 
representation of breather operators: 

%k(p,,) = S-(p,,exp(iNe))S'(p,,exp(-iNB)) e = $ ( y ' - T )  ( 3 0 )  

with commutation relation 

A -iP0 

A +iPO 
A(A)S' (po)  = as(A, P O ) S ~ ( P O ) A ( A )  aS(A, P O )  =- (31) 

for A # k0.  Relation (30) for N = 1 yields the representation of an  elementary bosonic 
creation operator through interacting soliton and antisoliton operators. The arguments 
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of St in (30) are complex, indicating that the constituent particles do  not have a 
separate existence, whereas in (31) SA may create a free particle. However, at N = N,,, 
one finds that 93kmdx(po) = ST(po)St (po)  showing that at this limit the breather creation 
operator reduces to the creation of scattering soliton and antisoliton as also has been 
observed above. We intend to explore the properties of solitonic S operators in a 
forthcoming publication. The state with N scattering particles is given by 
( q ~ ( p 1 . .  . p ~ ) ) = S - ( p l ) .  . . S ~ ( p N ) I O ) W i t h U 5 , ( A , I r ) = n , N = , ( h  - ip , ) / (A+ip,)andthe 
rest mass MN = Nm/ly’l. In analogy with the N-particle breather state (28), if we try 
to construct a soliton as an N-particle bound state assuming a distribution p, = p /  N + 
i T [ j  - ( N  + 1)/2], we get 

A - po exp(i N r / 2 )  
A - po exp( -i N71/2) US,(& PO) = 

with a single zero (pole) on the imaginary A axis, leading to a mass 

for odd N and vanishing mass for even N. This may be interpreted as the even number 
of soliton-type particles annihilating each other leaving only a single soliton with mass 
m/ly’l. It is fascinating that the masses of soliton and breather, obtained by us through 
an exact treatment, coincide with those found by Dashen et a1 [ 131 by a semiclassical 
approximation except for the difference that in our case y‘ = 2 tan-’( f ip2/2) ,  while in 
the semiclassical case 

We now observe that an alternative possibility of novel bound states of breathers 
and also of solitons may exist with higher topological number n if one considers a 
distribution p, = p /  N + (i  y ’ /  n ) [ j  - ( N  + 1)/2] for breathers and p, = p /  N + 
(in-/n)[j  - ( N  + 1)/2] for solitons. It is easy to verify that such distributions lead to 
2 n  symmetrically placed zeros (poles) of aN(A, F,,) in the upper (lower) half of the A 
plane for “breather’ states with mass 

and similarly to n zeros (poles) of a,(A, p,,) in the upper (lower) half of the A plane 
yielding ‘n-soliton’ states with mass 

These bound states have masses higher than that of n = 1 states and they are possibly 
only intermediate states, which ultimately break up into a superposition of n numbers 
of 1 breathers or 1 solitons. Since we cannot construct the explicit N-particle wavefunc- 
tion in configuration space, i t  is not possible at this stage to prove rigorously the 
existence of these bound states. 
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4. Gauge invariance of commutation algebra and mass spectra at the quantum level 

It is known that classical non-linear integrable equations have different Lax operator 
representations, which are gauge equivalent. However, in the corresponding quantum 
case such gauge equivalence may break down, since the gauge transformation and the 
normal ordering do not necessarily always commute. Consequently, the mass spectrum 
and other results obtained through the QIST treatment starting from a certain Lax 
operator are valid, in general, only for that particular gauge choice. However, it is, 
fascinating to note that, for the SG model in LCC, the commutation algebra and the 
mass spectrum obtained in a particular gauge, i.e. with Lax operator (4) also remain 
the same for the choice of standard AKNS type Lax operator (3) even at the quantum 
level. 

We find that at the classical level the Lax operator (4) is related to (3) through a 
gauge transformation 

L A K N s  L = hLAKNSh-' - hd,h-' (32) 

with h(x)  = exp(fiq(x)a,) .  But in the quantum case, apart from the above classical 
part, some additional anomalous terms appear due to the normal ordering of the fields. 
In particular, the non-trivial contribution comes here only from the normal ordering 
of the terms 

iul: h-'(x):(d,q'-'(x)+ ~ ( x ) ) :  h(x) :  (33) 

with :h(x) :  = exp($q'+'(x)u,) exp($q'-'(x)u,) for p 2 <  8 ~ .  
Note that all other singularities which may arise in (32) over the classical parts 

cancel among themselves resulting in no extra contribution, besides the terms in (33). 
We observe that, fortunately, the divergent pieces arising in this case are c-number 
terms and as a consequence,under such a gauge transformation, r will change only 
trivially with the addition of c-number terms containing a (181) generator. As is 
evident from (13) such changes in have no effect on the R matrix, i.e. they keep it 
the same as (14). 

In order to find the R matrix corresponding to the A K N S  Lax operator (3) satisfying 
the integrability condition 

we observe that T:(A) ,  defined in (7 ) ,  is gauge related to ?:(A) as 

?:( A )  = h- ' (x)  T:(  A )  h(y). (35) 

On the other hand, since we have the relation (8), one may find the explicit form of 
5 in terms of the R matrix using (34) and (35). With the substitution of (35), (34) 
becomes 

i h - ' ( x )  T:(A ) h ( y ) O  h-lix) T : ( p ) h ( y )  

= h- '(x)T:(p)h(y)@ h- ' (x)  T:(A)h(y)d. (36) 

In order to compare the above equation with (8), we have to rearrange (36), which in 
turn may pick up additional terms due to non-commutativity of the local fields. To 
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lim ( P exp d 5 L( 5, A 1 0 h (x  )) 

= lim ( 1  + Ix d t L ( 6 ,  A )  

x - 5  A-0 

r -5  A - 0  

= exp( -1 ya,  0 a, )(I  0 h - ' ( x ) )  

Similarly we have 

As a result of this (36) leads to 

E exP( -fyai 0 ai)( h - ' ( x )  0 h-'(x))  Tf( A ) 0 T : ( p  ) (  h ( y )  0 h ( y  ) )  exp( -$ya, 0 a,) 

= e x p ( - t y a , O ( + , ) ( h - ' ( x ) O h - ' ( x ) ) T ~ ( p )  

0 T ; ( A ) ( h ( y ) @ h ( y ) )  e x p ( - ~ y a , O a l ) k  
yielding finally 

R(x, A, 

(37) 
Note that the x dependence of I? (37) vanishes as x --* *CC ultimately giving the result 
E, = R ,  (19) which clearly yields the same mass spectrum (29b)  as found before. 

= exp(-tyc+,Oa,)(h-i(x)Oh-l(x))R(A, p ) ( h ( x ) ~ h ( x ) )  e x p ( t y a , B o , )  
= h - I (  X )  0 A-'( x ) R (  A, p ) h  ( x )  0 h (x). 

5. Discussion and conclusions 

We have solved the quantum sine-Gordon model in light cone coordinates by finding 
a suitable Lax operator with the ultralocal property. The well known AKNS type Lax 
operator is, in fact, gauge related to the ultralocal Lax operator. It is interesting to 
note that, though in general gauge equivalence is violated at the quantum level due 
to the appearance of anomalous terms, for this particular model under investigation 
all the physically relevant quantities remain invariant under the gauge transformation, 
even in the quantum region. Therefore, we could find the solution also with the 
non-ultralocal Lax operator, which is not possible with the direct use of the quantum 
inverse scattering method. On the basis of the results obtained, we may conclude that 
the SG model contains (anti-)soliton type 'elementary' particles with mass m/l y'l and 
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topological charge *l .  Their superposition may generate a charge * N state, which is 
a scattering state with mass Nm/ly’l. A soliton and  an antisoliton form an  ‘elementary’ 
bosonic particle of mass (2m/lyfl)lsin(y’/2), the N number of which may construct 
again a non-topological breather bound state of mass (2m/iy’l)lsin( Ny’/2)1 with 
N < 7r/ ly ‘ l .  Possibly, there also exist n-solitons and n-breathers as other loosely bound 
states. 

In [ 131 the following conjectures were made based on the W K B  result. ( i )  The W K B  

results are exact for the SG model. (ii) All bound states M L  are stable and decay 
amplitudes of the processes M L  + M E  are zero. (iii) There exists a ‘democracy’ for 
all arbitrary N with the N = 1 configuration having no special role. In  the light of 
our exact solution we are now in a position to comment on the validity of the above 
conjectures. The coincidence of our exact result with the semiclassical one [13] (apart 
from a renormalisation of the coupling constant) confirms the first conjecture. The 
second conjecture is proved by the conservation of particle number N in such theories, 
which is again an artefact of complete integrability and the existence of infinite 
conservation laws of S G ,  even at the quantum level. In connection with the third 
conjecture we should note that the binding energy A M ;  of the breather state is 
non-vanishing only for N > 1. Moreover, only at N = 1 d o  the scattering bosonic 
particle state (21) and the bound state (28) become identical, as is evident from the 
comparison of their mass spectra (25) and (296). Therefore, the N = 1 configuration 
may truly be interpreted as the elementary boson state and thus indeed plays a 
distinguished role, contradicting conjecture (iii). In [13] it is also argued that at 
N = N,,, the breather becomes unstable and decays into a soliton and  an  antisoliton. 
We also observe from (30) that at Ny’  = T, 8 becomes krr ( k  being an  integer), making 
the arguments of constituting soliton operators real; this means that at this limit they 
become operators of free solitons, into which the breather possibly breaks up. The 
expression (296) also shows that in this case the breather mass A4kmax = 2m/ly’l= 2 M S .  
In the limit y ‘+  0 when the sine-Gordon equation is converted into a non-interacting 
Klein-Gordon equation with free-particle mass m, the non-topological breathers reduce 
into free particles, while topological solitons d o  not have such a smooth transition. 
The topological soliton operator presented here possibly has fermionic properties and  
is related to the creation operators of the massive Thirring model. This problem is 
under investigation. 
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